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ON A DIFFERENCE-INTEGRAL EQUATION

Part II. Laplace Transform Treatment

by P.M. Anselone and H.F. Bueckner

1. Introduction. Consider the difference-integral equation

1
(1.1) -(t) - (t + )= f K(s)T(t - s)ds , 0 O-t < ,

-I

where the given kernel K(s), - I -< s 1 1, and the solution -p(t), -1 5 -t< 0o,

are assumed to be (real or) complex continuous functions. We are interested

particularly in the asymptotic behavior as t -+ 0o of an arbitrary solution 9(t)

of (1. 1).

This equation was treated by the authors in [1] with the aid of concepts and

methods of functional analysis. The same equation is treated below with the aid

of the Laplace transform. Since we shall make no smoothness assumptions on

qo(t), such as local bounded variation, we cannot apply directly the complex

inversion formula for the Laplace transform. Nevertheless, we manage to get

much the same results which a standard approach yields under suitable smoothness

conditions.

Quite general classes of difference-differential, difference-integral and

difference-differential-integral equations are treated in the book by Pinney [4].

He uses the Laplace transform along with smoothness and other assumptions.

Many references to the literature are given in Pinney' s book.

This paper is not entirely independent of [1]. Certain results obtained there
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essentially by means of classical analysis are fundamental to both approaches

to the problem. According to Theorem 2 of [1], each continuous function defined

for - I < t _-5 1 which satisfies (1. 1) at t = 0 has a unique continuous extension

ýo(t), - 1 - t < o, which satisfies (1. 1) for all t >0. Thus, each solution V(t)

of (1. 1) is determined by its values for - 1 _ t -< 1. Furthermore, by (3. 15), (3.4)

and (2. 8) of [1],

(1.2) (p(t) I 5 ect max Iv(s) , 0 cc
-l<s<

where

(1.3) c =ln[(l +Me M)(1 +ZM)] , M = max IK(s)I

-ls<l

Z. The Laplace transform of p(t). Henceforth, let 9 ,(t) denote an arbitrary

but fixed solution of the difference-integral equation. The Laplace transform of

•(t), 0:_5t <oo, is

(2. 1) $(z) = f e- zt (t)dt (z = x + iy)

0

at least for x > c, where c is defined by (1. 3).
-zt

Multiply both members of equation (1. 1) by e and integrate to obtain

(2.2) (Z) A(z)

where

(Z. 3) A(z) f e-Z(t)K(s)q,(t)dtds - e feZt@(t)dt
-l -l

1

(2.4) T(z) = 1 - ez - feZSK(s)ds

-1
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Let (2. 3) and (Z. 4) define A(z) and ,(z) for all z. Let (2. 2) define W(z)

as a meromorphic function; its poles comprise a (perhaps proper) subset of the

zeros of -I,(z).

Note that 9(z) is independent of ((t) and that A(z) depends only on the

values of qo(t) for - 1_-5 t -5 1. Hence, $(z) depends on q,(t) only for -1 < t 5 1,

which agrees with the fact that p(t) is determined by its values for - 1 5 t < 1.

The function T(z) was introduced in another connection in [1], where it

was called the characteristic function. For later purposes we outline below some

of its properties. For further details see Section 6 of [1].

A function qo(t) = ezot satisfies (1. 1) if and only if LF(z0 ) = 0. More generally,

the functions pj(t) = tjezot , 0 5 j < J, satisfy (1. 1) if and only if z0 is a

zero of 9(z) of order J. The zeros of T(z) are countably infinite in number.

S'If(z0 ) = 0 then Re(z 0 ) < c, where c is defined by (1. 3). For some positive

integer m, there exist simple zeros Zn, n = :m, (m + 1),..., of 'f(z)

such that

z - 2n'rri -• 0 as In! -I co
n

Excluding these points, 9f:(z) has only a finite number of other zeros z with

Re(z) ->c where a is any real number.

Finally, let us express T(z) in the form

(2.5) T(z) = 1 - ez - G(z)

where
1

(2. 6) G(z) = fezs K(s)ds
-l

By the Riemann-Lebesgue lemma,
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(2.7) G(z) - 0 as ly - oo (z =x+iy)

uniformly on each finite x-interval.

Also for future reference, we state some of the properties of A(z). It

follows easily from (2. 3) that
1

(Z. 8) A(z) = f e-zth(t)dt ,
-l

wh ere t

- fK(s)q(t - s)ds - p(t + 1) 1- -5t <0

(2. 9) h(t) =

1
f K(s)q(t -s)ds ,0 :-St -: 1

t

By (1. 1) with t = 0

(2. 10) h(0) - h(0-) = 9(0)

Finally, by (Z. 8) and the Riemann-Lebesgue lemma,

(2. 11) A(z)- 0 as I yl (z =x +iy)

uniformly on each finite x-interval.

It follows from (1. 2) by a standard argument involving the Plancherel theorem

(cf. [5], pg. 80) that

(2.12) 9 (t) = l.i~m. f $()eZtdz > c
11 -•oo -•

where 1. i. m. indicates limit in the mean and is the limit in the norm of

L 2(0W- t < o). We shall make only limited use of this result. Under suitable

smoothness conditions on q(t), such as local bounded variation, (2. 12) holds
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On the interval 1 !-- t < 0o, p(t) is periodic with period one. It follows

from (2. 9) and (2. 10) that p(t) is continuous. Furthermore, p(t) is obviously

bounded. The following result is needed for later purposes.

LEMMA 3.1. For each y < 0,

I Y+ioo

(_ (Z) Ztd(3.3) Zri e ( ze = 0 , t > 1

where the improper Riemann integral converges uniformly to zero on each finite t-interval.

Proof. Fix y <0. Choose tl, t 2 and E arbitrarily such that 1 < t 1 <t 2

and E > 0. We must prove that

Y+illZ (ezt
(3.4) I p(z)e dz <E , t 1 _--t=<t 2 ,

v-i'll

for all sufficiently large Tl and ij. In view of (3. 1), p(z) is regular in the

left half-plane. Therefore, if a <p<y, then
Y+i'lz

f p(z)eZ dz =
Y-in1

v-n1 L-inj I a-inl 2 P+in•q 2 +i7nz{f + f + f + f + f P(z)e dz.

First, we choose P < y such that

P+in t1:t t2
f 4(z)eZtdz i< 1 -0< <L ,

a+in a~ij 5- 00 < l <o 00

This is possible because, by (3.1) and (2. 8),

p(z) =O(ex) as x-* -oo (Z = x +iy)
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uniformly for - oo < y < oo. By (2. 11), if "l nd TI, are sufficiently large,

then
P-i• 1

(Z eZtdzI < tI < t <t

Y+i112

If P(z) eZtdz < t t t
P+i, z 1 2

For each such choice of .1 and i 2  we'ncH~ho~cse cL so large negatively that

a+ i11 2 z t

f (eZtdz -< tI t < t
a-iDj1 5%

The foregoing inequalities imply (3.4) andb, hneroce, the assertion of the lemma.

4. The function q(t). Define q(t) suoch that

(4.1) (t p p(t) + q~t 0, -<-t

By (2.13) and (3. 1),

(4.2) q(z) = e(z)G(z)z1 -e

If z is a pole of q(z) then either z isaapool0of ^(z) or z = 2Trni for some

integer n. Thus, the poles z = x + iy wil1lth x 0 0 of q(z) and A(z) coincide.

LEMMA 4. 1. If A(z) is regular for ^Ree(z.)= c where a 0, then the

improper integral

1 Q+iOO t(4. 3) qaCL(t) f Zzi/ (z) e Z d~z 0 - < t < 00o
CL-io0

converges uniformly on each finite t-intervI.1A, Fu rtherrnore,

(4.4) q (t) = e atQ (t), -0o < t < 0o
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where Q (t) is bounded and uniformly continuous. If ((z) is regular for

Re(z) =>:, where g > 0, then

(4.5) q(t) = qý(t) = O(et) t ?0

Proof. Using (4.2), we express (4.3) in the form

c0 G(a + iy) iyt
q(t) = -f( + iy) e dy

By (2.2) and (2.8),

+ A(a + iy)
(a+Iiy) = (a + iy)

where A(a + iy), considered as a function of y with a fixed, is the Fourier

transform of a function of t in L I(- 00, oo) n L2 (- CO, oo). Therefore, A(a + iy)

is a continuous function of y and, by the Plancherel theorem, A(a + iy) c L2 (- co, co).

It follows from (2.5) and (2. 7) that I/q,(a + iy) is bounded for jy I sufficiently

large. Since, by hypothesis, V(z) is regular for z = a + iy, - oo < y < oo

the foregoing results imply that

(a + iy) E L2(-c0, .c)

By a similar argument,

G(a + iy) L cc cc)
S+iy 2 L21l-e

Since the product of two functions in L (-2 0, oo) lies in L (- 0, oc) (cf. the

Schwarz inequality),

9(a + iy) G(a + iy) E L (- 0c, cc)
1 - ea+ly 1

which implies the assertions of the theorem regarding (4. 3) and (4.4). The other
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assertions follow by means of a standard theorem.

LEMMA 4. 2. If $(z) is regular for Re(z) = a, where a < 0, then

I C+ioo
(4. 6) q (t) f ^(Ze'd t

ia-ioo

where the integral converges uniformly on each finite t-interval. For t > 2,

q(t) satisfies the difference-integral equation (1. 1).

Proof. Lemmas 3.1 and 4. 1 and the equation $(z) = p(z) + -(z) yield (4.6)

and the uniform convergence. It follows from (4. 6) and (2. 2) that

I a+iA e
q (t) - q (t + 1) - f K(s)q(t - s)ds -f A(z)eztdz , t > 2

-i a-iao

A procedure similar to that used in the proof of Lemma 3.1 shows that the last

integral vanishes.

5. The asymptotic behavior of (P(t). Some of the principal results of this

paper are collected here.

THEOREM 5.1. If $(z) is regular for Re(z)-- , where • #0, then

(5. 1) ¢(t) = O(e t

Moreover, if ý < 0, then

- +ioo z tdz t > 1
(5.2) p(t) = q (t) f (z)e

where the integral converges uniformly on each finite t-interval.

Proof. According to (4. 1), qo(t) = p(t) + q(t), where p(t) is bounded. By

*-THEOREM (cf. Doetsch [7], pg.107, Th. 6). If the transform f(z) of f(t) is
regular for Re(z) =>g and if the complex inversion integral converges uniformly to
g(t) on each finite t-interval with t _-_T, then f(t) = g(t) for t -T.
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(4.4), q(t) = O(e~t). Therefore, (5. 1) holds if t > 0. If t < 0, then (5.1)

follows from Lemma 4. 2 and the standard theorem cited earlier (cf. [7], pg. 107 ).

In some cases, the asymptotic estimate (5.1) can be improved with the aid

of the residue theorem.

THEOREM 5. 2. Suppose that 9(z) is regular for Re(z) a, where a > 0

and that A(z) has exactly n poles zk , k =1,...,n, with Re(z ) > a. Then(P k k

q(t) has the form

n Zkt

(5.3) ,(t) = • Pk(t)e + q(t) + p(t) , t -20
k= 1

where Pk(t) is a polynomial of degree one less than the order of the pole k

of O(z). The sum in (5. 3) is dominant asymptotically as t -• 0o.

Proof. It follows from Lemma 4.1 that

n
(5.4) q(t) = q (t) + Z Res [f(z)ezt]k= I Z=Zk

Since (pt) = p(t) + q(t) and the residue of q(z)ezt is the inverse transform of the

principal part of the Laurent expansion of q(z) about Zk, the assertions of the

theorem are correct.

THEOREM 5.3. Suppose that $(z) is regular for Re(z) !a, where a < 0,

and that A(z) has exactly n poles zk, k = -,...,n, with Re(z ) >a. Then(P k k

(p(t) has the form

n zkt
(5.5) p(t) = Z Pk(t)e +q(t) , t > 1

k=l

where Pk(t) is a polynomial of degree one less than the order of the pole zk
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of (p(z). Each of the n + 1 terms in (5.5) satisfies the difference-integral

equation (1. 1). The sum in (5.5) is dominant asymptotically as t - oo.

Proof. The residue of -p(z)ezt at zk has the form

zkt
rk(t) = Pk(t)e , k = I,...,n

It is easy to verify that each rk(t) satisfies (1. 1). By (5. 2), with (p(t) replaced
n

by ((t) - Z rk(t), and (4.6),
k=l

n n a1-iaO zt
q(t) - E rk (t) = q (t)- •Z j- f r(z)e dz

k=1 k=l Z -iao

for each t > 1. By a routine argument,

1 •ia zt1 2 i rk(z)e , dz = 0 k = , .. na i ia-iao

Thus, the theorem is proved.

6. Further properties of q(t). Although the results derived below do not

yield uniform asymptotic estimates for 9(t) as t -- oo, they are interesting in

themselves. The next theorem is in the direction of a Heaviside expansion for

THEOREM 6. 1. If $(z) is regular for Re(z) = a, where a <0, then

(6.1) •(t) = l. i. M. > i Res[g(z)ezt] + qa(t) , t > I

Y- cc r <(2N+1)Trr

where the limit is in the mean square on each finite t-interwil. For each sufficiently

large positive integer m there exist simple poles z and complex numbers a n

n n
n = m, (m + 1),..., such that



-12- #268

(6. ?) z -Zn~ri-. 0 as n-- oo

and

z nZt (zt)eZt

(6.3) '(t) = ane + Res[ ( +q (t), t > 1
n=-m xm>c

Iy 1< (2m-l)Tr

where the series converges in the mean square on each finite t-interval.

Proof. Equation (6. 1) follows by routine arguments from (2. 12), (4. 6) and

(2. 11). Relations (6. 2) and (6.3) follow from (6. 1) and the remarks in Section 2

on the zeros of 'I(z). Further details are omitted.

Suppose that A(z) is regular for Re(z) >0. In view of Theorem 5.1, it

seems reasonable to conjecture that p(t) -- 0 or, at least, that V(t) remains

bounded as t - oo. Rudin [8] has addressed himself to these conjectures. He

has constructed an example in which 9(t) is unbounded. Although the kernel

K(s) in his example has a possible discontinuity at s = 0, the construction seems

flexible enough to permit elimination of the discontinuity.

Although we are not able to assert that V(t) is bounded if A(z) is regular

for Re(z) _ 0, the following theorem shows that 9(t) tends to zero in a certain

mean square sense as t - oo.

THEOREM 6. 2. If V(z) is regular for Re(z) =0, then

S+6
(6.4) f p(t) I dt- 0 as S - c 6>0

S

Proof. By hypothesis, all the poles of 4(z) have negative real parts. There-

fore, (6. 4) holds with p(t) replaced by the second sum in (6. 3). Furthermore,

(6.4) holds with 9(t) replaced by q (t) with a < 0, since q (t)= 0(e t). It

remains to consider the first term in (6. 3), which we denote by
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Sz t
(6.5) f(t)= ane n

n=*mn

The series converges in the mean square on each finite t-interval. In view

of (6. 2), we can assume without loss of generality that

(6.6) Izn- 2nnij < 2 log 2 InJ 1_2 m

In [9], Anselone considered sums of the type (6. 5). It was proved that

(6. 4) holds with (p(t) replaced by f(t). The assertion of the theorem now

follows by means of (6.3) and the triangle inequality.



-14- #268

REFERENCES

[1] Anselone, P.M. and Bueckner, H. F., On a Difference-Integral Equation,

MRC Technical Summary Report #171, August 1960, University of Wisconsin,

Madison, Wisconsin.

LZ] Taylor, W. C., and Treuenfels, P. M., The Emptying of a Gun Tube, Ballistic

Research Laboratories Report No. 976 (SECRET), March 1956, Aberdeen Proving

Ground, U.S. Army.

[3] Giese, I. H., On the Asymptotic Behavior of Certain One-Dimensional Flows

Ballistic Research Laboratories Report No. 1098, March 1960, Aberdeen

Proving Ground, U.S. Army.

[4] Pinney, E., Ordinary Difference-Differential Equations, 1959, University of

California Press, Berkeley and Los Angeles.

[5] Widder, D. V., The Laplace Transform, 1946, Princeton University Press.

[6] Churchill, R.V., Operational Mathematics 2nd ed., 1958, McGraw-Hill Book

CompL.ny, Inc., New York.

[7] Doetsch, G., Theorie und Anwendung der Laplace-Transformation, 1937,

Springer-Verlag, Berlin.

[8] Rudin, W. , The Influence of Damping Factors, MRC Technical Summary Report

#220, March, 1961, University of Wisconsin, Madison, Wisconsin.

[9] Anselone, P. M., On the Asymptotic Behavior of the Sum of a "Non-Harmonic

Fourier series", MRC Technical Summary Report #291, January 1962,

University of Wisconsin, Madison, Wisconsin.


